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The vorticity interaction mechanisms governing miscible displacements in three-
dimensional heterogeneous porous media are investigated by means of detailed
simulations in the regimes of viscous fingering, dispersion, and resonant amplification.
The computational results for spatially periodic and random permeability distribut-
ions are analysed in detail with respect to the characteristic wavenumbers and norms
associated with the individual vorticity components. This allows the identification
of the mechanisms dominating specific parameter regimes. Nominally axisymmetric
displacements such as the present quarter five-spot configuration are particularly
interesting in this respect, since some of the characteristic length scales grow in time as
the front expands radially. This leads to displacement flows that can undergo resonant
amplification during certain phases, while being dominated by fingering or dispersion
at other times. The computational results also provide insight into the effects of
density-driven gravity override on the interactions among these length scales. While
this effect is known to play a dominant role in homogeneous flows, it is suppressed
to some extent in heterogeneous displacements, even for relatively small values of
the heterogeneity variance. This is a result of the coupling between the viscous
and permeability vorticity fields in the viscous fingering and resonant amplification
regimes. In the dispersive regime, gravity override is somewhat more effective because
the coupling between the viscous and permeability vorticity fields is less pronounced,
so that the large-scale structures become more responsive to buoyancy effects.

1. Introduction
The central issue in the analysis of displacements through heterogeneous porous

media concerns the interaction between the permeability variation and the intrinsic
instability mechanism related to an adverse mobility gradient. Several earlier
investigations (e.g. Christie & Bond 1987; Araktingi & Orr 1988; Moissis, Miller &
Wheeler 1989; Waggoner, Castillo & Lake 1992; Tchelepi & Orr 1993, 1994; Tchelepi
1994; Zhang, Sorbie & Tsibuklis 1997) demonstrate that either viscous fingering or
permeability-induced channelling can dominate the displacement process, depending
on the viscosity ratio, as well as the variance and correlation length of the permeability
field.

† Author to whom correspondence should be addressed.
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Figure 1. The three-dimensional computational domain.

De Wit & Homsy (1997a) investigate the problem at a more fundamental level, by
means of a linear stability analysis of a rectilinear displacement in the presence of
periodic permeability variations. They show that the growth of the viscous instability is
amplified due to a harmonic resonance that occurs when the transverse wavenumbers
of the permeability variation and the viscous instability are in an integral multiple
relationship. A sideband resonance can occur if the sum of these wavenumbers is
equal to the most amplified wavenumber of the homogeneous case. For streamwise
permeability variations, the authors demonstrate that an amplification of the growth
can occur when the inverse frequency at which the front encounters permeability
oscillations is equal to the intrinsic dispersive time. Tan & Homsy (1992) briefly
examine nonlinear aspects of miscible displacements through a random permeability
field for rectilinear flows. By means of numerical simulations, they confirm the
existence of a resonance mechanism for the random heterogeneity case as well.
Camhi, Ruith & Meiburg (2000) use a vorticity based approach to study the coupling
between the viscous and permeability related vorticity components in two-dimensional
rectilinear flows, both for neutrally buoyant and variable-density displacements. They
point out that the coupling between the viscous and permeability vorticity fields leads
to a retardation of the gravity layer.

The present investigation addresses three-dimensional miscible displacements in
doubly periodic arrangements of injection and production wells such as the well-
known quarter five-spot configuration, cf. figure 1. This configuration, while being
of practical importance, has several features that add to the complexity of the
displacement. Near the injection source, the flow field is nominally axisymmetric,
whereas later it becomes more nearly rectilinear. In their recent linear stability analysis
of helical perturbations in radially evolving flows, Riaz & Meiburg (2003a) show
that such flows are more sensitive to three-dimensional effects than unidirectional
flows. This behaviour carries over to the nonlinear regime of homogeneous flows
as well (Riaz & Meiburg 2003b). Heterogeneous displacements in this geometry
introduce an additional degree of complexity. According to the linear stability
analysis of radial displacements (Tan & Homsy 1987; Riaz & Meiburg 2003a),
the wavenumber of the most amplified azimuthal viscous instability mode remains
constant as the front moves away from the source. Consequently, the instability
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wavelength changes continuously as a function of the radial distance from the source,
so that the ratio of the permeability to the viscous length scale, and thereby the
potential for resonance, change continuously over time. Chen & Meiburg (1998b)
conduct a detailed investigation of the coupling between viscous and permeability
related vorticity for two-dimensional quarter five-spot displacements using a correlated
random permeability field. How this coupling is modified in three dimensions, and in
the presence of buoyancy effects, is to be investigated here.

The identification of different flow regimes in heterogemeous displacements has been
the subject of several earlier investigations, among them those of Waggoner et al.
(1992), Sorbie et al. (1992) and Kempers & Haas (1994). According to these authors
the variable-viscosity flow in a nearly homogeneous reservoir with little dispersion is
termed ‘viscous fingering’, while a nearly constant-viscosity displacement dominated
by strong heterogeneity is referred to as ‘channelling’. Finally, displacements domina-
ted by mechanical dispersion are said to be in the ‘dispersive regime’. In the present in-
vestigation, our goal is to analyse the vorticity interaction mechanisms for these kinds
of flows, and for the parameter ranges where transitions between these regimes occur.
Towards this end, we will compare the natural nonlinear wavelength of homogeneous
flows with corresponding wavelengths of heterogeneous displacements.

The paper is organized as follows. Section 2 describes the physical model and the
governing equations. In § 3, we begin our analysis by addressing the conceptually
simple problem of two-dimensional displacements in the presence of periodic per-
meability variations. By analysing the characteristic wavenumbers and the norms of
the various vorticity contributions, we are thus able to establish the different regimes
of viscous fingering, resonant amplification, and dispersion. We subsequently apply
the insight gained from the periodic permeability fields to random heterogeneity
distributions. These give rise to a range of permeability length scales, which renders
the interactions with the viscous instability more complex. Neutrally buoyant three-
dimensional displacements are discussed in § 4, while § 5 addresses three-dimensional
displacements with gravity override. The main conclusions from the present investi-
gation are summarized in § 6.

2. Governing equations
The mathematical model, described in detail by Riaz & Meiburg (2003b), is based

upon the vorticity formulation of Darcy’s equation. We assume incompressible flow
and use a convection–diffusion equation to advance the concentration field of the
injected fluid. The computational domain is shown in figure 1. In order to derive
the dimensionless equations, we choose the side length L of the domain as the
characteristic length scale. By denoting the source strength per unit depth as 2πQ, we
thus obtain time and velocity scales as L2/Q and Q/L, respectively. The viscosity µ1

of the injected fluid is taken as the reference value for scaling the viscosities, while the
difference in the fluid densities ρ2 − ρ1 provides a characteristic density value. Here
the index ‘1’ refers to the injected fluid, while ‘2’ denotes the displaced fluid. We define
an aspect ratio A = H/L, where H is the domain height. The resulting governing
equations in non-dimensional form are

∇ · u = 0, (2.1)

ω =
1

k
∇k × u + R∇c × u +

G k

µ
∇c × êz, (2.2)

∂c

∂t
+ u · ∇c =

1

Pe
∇2c, (2.3)
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where êz is the unit vector in the z-direction. For simplicity, we will refer to the terms
on the right-hand side of the vorticity equation as ‘permeability vorticity’, ‘viscous
vorticity’, and ‘gravitational vorticity’, respectively. Three dimensionless parameters
appear in the above equations: the Péclet number Pe, the gravity parameter G, and
the viscosity ratio parameter R

Pe =
Q

D
, (2.4)

G =
g(ρ2 − ρ1)KL

Qµ1

, (2.5)

R = − 1

µ

dµ

dc
= ln

(
µ2

µ1

)
. (2.6)

Here, c denotes the concentration of the injected fluid, and k represents the locally
varying isotropic permeability; K indicates the average of the permeability field,
which is taken as the characteristic permeability value; µ and ρ are the concentration-
dependent viscosity and density, expressed as

µ = eR(1−c),

ρ =
ρ2

ρ2 − ρ1

− c.

We take the scalar diffusion coefficient to be a constant D.
The velocity is obtained through a three-dimensional vector potential (Fletcher

1991) as

u = ∇ × ψ, (2.7)

∇2ψ = −ω. (2.8)

At the vertical boundaries symmetry conditions are assumed, while the top and
bottom represent no-flux boundaries. By denoting the spatial components of ψ and
ω as (φ, θ, χ) and (ξ, σ, ζ ), respectively, we thus obtain

x = 0, 1 :




cx = 0, kx = 0,

u = 0, vx = 0, wx = 0,

φx = 0, θ = 0, χ = 0,

ξx = 0, σ = 0, ζ = 0,

(2.9)

y = 0, 1 :




cy = 0, ky = 0,

uy = 0, v = 0, wy = 0,

φ = 0, θy = 0, χ = 0,

ξ = 0, σy = 0, ζ = 0,

(2.10)

z = 0, A :

{
cz = 0, kz = 0, w = 0,

φ = 0, θ = 0, χz = 0.
(2.11)

In order to avoid an initially singular concentration distribution, we specify as
the initial condition at a small but finite time the self-similar concentration profile
corresponding to the radially symmetric problem (Tan & Homsy 1987). It has the
form

co =
1

2

[
1 + erf

(√
Pe

(
r

ro

− 1

))]
. (2.12)
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Here ro represents the initial radial location of the front. It determines the ‘effective
starting time’ t0 > 0 of the computation as

t0 = 0.5 r2
o , (2.13)

The above equations are solved computationally by a combination of the Fourier–
Galerkin spectral method (Gottlieb & Orszag 1977; Canuto et al. 1986) and sixth-
order compact finite differences (Lele 1992), in conjunction with an explicit third-order
time-stepping scheme. Numerical simulations are performed with very high resolutions
in order to resolve all relevant length scale. Runtimes can vary between 10 hours
for two-dimensional (single processor) and 2 days for three-dimensional (multiple
processor) calculations on an SGI – Origin machine. A more detailed discussion of
the governing equations, numerical method and parallelization procedure is provided
by Riaz & Meiburg (2003b) and Riaz (2003).

3. Two-dimensional displacements
We begin by analysing displacements through a spatially periodic permeability field.

This will enable us to identify some of the basic dynamical mechanisms associated
with heterogeneous displacements. The insight gained from this conceptually simple
permeability field will subsequently be utilized to study the more complex situation
of displacements in random permeability fields. In the discussion of heterogeneous
displacements, the natural length scale of the viscous instability in a homogeneous
displacement will play a key role, so that it will be discussed first.

3.1. Natural viscous length scale of homogeneous displacements

To identify the dominant length scale in nonlinear displacements, we evaluate the
characteristic wavenumber of the vorticity field associated with viscosity variations.
An effective wavenumber ñ is defined as

ñ =

∫ K̃

0

k̃E(k̃) dk̃∫ K̃

0

E(k̃) dk̃

, (3.1)

where k̃ is the wavenumber associated with the Fourier decomposition of the vorticity
field and E(k̃) is the energy spectrum of the vorticity field; ñ is the dominant
wavenumber of the displacement. It becomes ñh, ñv or ñp when the vorticity field
it is associated with is viscous homogeneous, viscous heterogeneous or permeability,
respectively.

We briefly examine the evolution of the characteristic wavenumber ñh of the
viscous vorticity field for homogeneous displacements. Figure 2 shows ñh along with
the most amplified mode given by the linear stability analysis of the equivalent radially
symmetric situation at identical times, for various Péclet numbers (Tan & Homsy
1987; Riaz & Meiburg 2003a). There is remarkably good agreement, especially for
higher Péclet numbers and for early times. Note that the slope of ñh for Pe = 200
and 400 closely follows the 1/

√
2t behaviour of the linear stability results, which

indicates a weak effect of the nonlinearity on the dominant wavenumber. For the
larger Péclet numbers of Pe = 800 and 1200, the nonlinear fingering interactions lead
to a more substantial deviation from the linear behaviour. Note that we have found
ñh to be largely independent of the specific random initialization of concentration
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Figure 2. Comparison between the characteristic wavenumber of homogeneous displacements
ñh obtained from two-dimensional nonlinear simulations (solid lines), and the most amplified
wavenumber from the linear stability analysis of the corresponding radially symmetric base flow
profiles (dashed lines), for various Péclet numbers. The horizontal dash-dotted lines indicate the
permeability wavenumbers considered in the present work. �, Pe = 200; �, Pe = 400; �, Pe =
800; �, Pe = 1200.

perturbations. The figure not only provides some measure of validation of the
computational results, but it also gives the most amplified nonlinear mode of the
freely developing viscous instability as a reference for the subsequent discussion of
heterogeneous displacements. There we will find that the closer the value of the viscous
vorticity wavenumber ñv for heterogeneous displacements is to ñh for homogeneous
displacements, the higher the possibility of a resonant amplification. Conversely, the
potential for amplification diminishes with a deviation of ñv from ñh.

3.2. Spatially periodic permeability field

A spatially periodic permeability field is specified as

k(x, y) = exp{γ cos(2πlx) cos(2πmy)}, (3.2)

where the wavenumbers l and m are the inverse of the correlation lengths in the x-
and y-directions, respectively. Unless specified otherwise, we take l and m to be equal.
The standard deviation γ is the square root of the variance s of the permeability
field.

Typical displacements through spatially periodic permeability fields are displayed
in figure 3. Concentration plots of the injected fluid serve to visualize the interface.
Figures 3(a) and 3(b) show the contours at two different times for the small
wavenumber of m = 5. The fingers are seen to develop along high permeability
paths mainly around the diagonal. A higher wavenumber m = 20 is shown in figures
3(c) and 3(d). Here more fingers are generated, with a layered structure along the
diagonal. In order to analyse the above displacement processes quantitatively, we
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Figure 3. Concentration fields for displacements in spatially periodic permeability distribut-
ions. Pe=800, R = 2.5, s = 0.5. (a) m= 5, t = 0.1, (b) m= 5, t = 0.127, (c) m= 20, t = 0.1,
(d) m= 20, t = 0.144. As explained in the text, for m= 5 an initial viscous fingering
dominated phase is followed by a resonant amplification phase. For m= 20, an initial resonant
amplification phase gives way to a dispersive phase during which the interface slows down,
thereby enhancing the displacement efficiency.

introduce the norm of the viscous and permeability vorticity fields, respectively:

‖ωv(t)‖ =

√√√√ 1

L M

L∑
i=1

M∑
j=1

ωv(t)
2
i,j , ωv = R∇c × u, (3.3)

‖ωp(t)‖ =

√√√√ 1

L M

L∑
i=1

M∑
j=1

ωp(t)2i,j , ωp =
1

k
∇k × u. (3.4)

Here L and M denote the number of computational grid points in the x- and
y-directions, respectively. Figure 4 shows the viscous vorticity norm for R = 2.5,
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Figure 4. Viscous vorticity norm for various values of the correlation wavenumber m, with
R = 2.5 and s = 0.5 in the spatially periodic permeability field: (a) Pe= 200, (b) Pe= 800. The
maximum value of the norm at early times reflects the initial amplification of the viscous
vorticity at certain values of m. As explained in the text, the sustained growth for lower values
of m at late times is due to a resonant amplification, while the steep decay of the norm for
larger m indicates the dispersive regime.

s = 0.5, and various permeability correlation lengths, at two values of Pe. Pronounced
differences are noticeable among the various simulations with respect to the evolution
of the viscous vorticity norm. While in some simulations a significant growth of
the vorticity norm occurs for either early or late times, other displacements are
characterized by long phases during which the vorticity norm declines. Generally,
a higher overall vorticity level is indicative of a more vigorous evolution of the
displacement front, which in turn results in an earlier breakthrough. Here the
breakthrough time tb is defined as the time when the concentration of the injected fluid
first reaches 1% somewhere along the height of the production well. Correspondingly,
the overall efficiency η of the displacement process is given as the fraction of the total
domain volume occupied by the injected fluid at the time of breakthrough, η = πtb/2.

In order to gain insight into the mechanisms governing this overall vorticity
evolution, it is instructive to analyse the dominant length scales of the viscous and
permeability vorticity fields, and to compare them with the natural length scale of the
corresponding homogeneous displacement. This information is contained in figure 5,
which displays the characteristic wavenumbers of the viscous (ñv) and permeability
(ñp) vorticities, for the same set of simulations as in figure 4. In figure 5 ñp is seen
to remain nearly constant throughout the displacement process, as the permeability
field does not change. The natural wavenumbers of the corresponding homogeneous
displacements ñh are shown by thick solid lines. As discussed above, they decrease
with time, due to the self-similar evolution of the interface, as well as the nonlinear
mechanisms of merging, coalescence and shielding in radial base flows (Tan & Homsy
1987; Chen & Meiburg 1998a).

If the natural length scale of the corresponding homogeneous case lies substantially
above that of the permeability field, figure 5 indicates that in the heterogeneous
displacement the dominant scale of the viscous vorticity remains close to the
permeability length scale. Waggoner et al. (1992) term this effect dispersive. In this
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Figure 5. The characteristic wavenumbers of the viscous (ñv , solid line) and permeability
(ñp , dashed line) related vorticities for the spatially periodic permeability fields at R = 2.5,
s = 0.5 and various values of m. �, m= 5; �, m= 10; �, m= 20; �, m= 40. (a) Pe= 200,
(b) Pe= 800. The thick line shows the natural wavenumber ñh for the corresponding
homogeneous case. Harmonic resonance at an early time of t = 0.03 is indicated by ñv ≈ ñh

and ñv ≈ 2 ñp for m = 10 and m = 20 in (a) and (b), respectively. The dispersive regime occurs
when either ñv � ñh or ñv < ñp . At a later time t > 0.05, the m= 5 case in (a), and the m = 5
and 10 cases in (b) undergo harmonic resonance.

regime, the viscous instability can no longer evolve at its natural wavelength, as it
is constrained by the length scale of the permeability field. Consequently, dispersion
gains importance and reduces the overall concentration gradients (figure 3d), so that
the interface advances at a slower rate. This is reflected by a damping of ||ωv|| at later
times for those displacements with natural length scale larger than the permeability
length scale, e.g. m = 10, 20, and 40 in figure 4(a), and m =20 and 40 in figure 4(b).

If the natural length scale initially is smaller than the permeability correlation
length, the viscous instability is free to grow at its natural scale for early times, i.e.
ñv ≈ ñh. Figure 5(a) shows that this is the case at Pe= 200 for m = 5 and m =10. The
subsequent increase of this natural wavelength brings the viscous length scale closer
to that of the permeability, so that the vorticity can undergo a resonant amplification.
This harmonic resonance was established by means of a linear stability analysis for
rectilinear heterogeneous displacements (De Wit & Homsy 1997a) and observed for
nonlinear displacements by De Wit & Homsy (1997b), Chen & Meiburg (1998b) and
Camhi et al. (2000). Examples can be found in the early vorticity growth around
t = 0.03 for Pe= 200 and m =10, or for Pe= 800 and m =20, when ñv ≈ 2 ñp . This
resonant amplification of the viscous vorticity by the first harmonic of ñp causes
the highest early values of ‖ωv‖ to appear for an intermediate permeability length
scale. For the m =5 case shown in figure 5(a), ñv follows ñh closely until t ≈ 0.05.
Thereafter it maintains a value of ≈ 2 ñp until just before breakthrough, again
allowing a resonant interaction. This is reflected by the sustained high level of ‖ωv‖.
Similar situations occur for the cases of m = 5 and 10 at Pe= 800 in figures 4(b) and
5(b). The displacement efficiency values noted in figure 4 show that these late-time
amplifications result in the least efficient processes for m = 5 and Pe=200, and for
m = 10 and Pe=800. For large values of m, an increase in the viscous vorticity at later
time, as shown in figures 4(a) and 4(b), indicates that the dominance of dispersion and
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Figure 6. Ratio of the norms of the viscous and permeability vorticity. (a) Pe=200,
(b) Pe= 800. �, m= 5; �, m= 10; �, m= 20; �, m= 40. A comparison with figure 5
indicates that in the viscous fingering regime ‖ωv‖/‖ωp‖ > 1, while in the dispersive regime
‖ωv‖/‖ωp‖ < 1. Resonant amplification occurs when ‖ωv‖/‖ωp‖ ≈ 1.

finger interaction lead to the generation of large-scale structures which are relatively
unaffected by small-scale permeability variations and can again move rapidly towards
the production well. This effect will be seen to become more important for three-
dimensional displacements.

Figures 4 and 5 reflect the existence of three basic parameter regimes for hetero-
geneous displacements, which can be summarized as follows:

viscous fingering : ñv ≈ ñh and ñv > ñp, (3.5)

resonant amplification : ñv ≈ ñh and ñv ≈ i ñp, i = 1, 2, . . . , (3.6)

dispersive : ñv � ñh. (3.7)

The physical mechanism of amplification can be understood as follows. As the
viscous fingers develop due to variations in permeability, viscous vorticity dipole
structures (see De Wit & Homsy 1997a and Chen & Meiburg 1998a) are generated
along the sides of the fingers. They increase the flow of less viscous fluid through the
fingers, thereby increasing the local velocity. This increase in velocity serves to increase
the permeability vorticity, which in turn further amplifies the local velocity and the
viscous vorticity. When the viscous and permeability vorticity dipole structures are
close to each other or in a certain spatial relationship, the viscous vorticity can
be substantially amplified, leading to the resonance phenomenon. The dispersive
behaviour occurs when the width of the viscous finger is larger than the channel
width, such that the permeability vorticity accelerates only a small portion of the
less viscous fluid inside the finger. This leads to mechanical dispersion of the viscous
finger.

Figure 6 shows the ratio ||ωv||/||ωp|| of the viscous and permeability vorticity
norms. It demonstrates that the resonant amplification cases of m = 5, Pe = 200 and
m = 10, Pe = 800 are associated with ||ωv||/||ωp|| ≈ 1. In this way, the viscous and
permeability vorticities are in an approximate balance, so that they can optimally
feed upon each other. The viscous fingering regime typically has ||ωv||/||ωp|| > 1, so
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Figure 7. Random permeability distribution. (a) l = m = 5, (b) l = m = 20. The random
permeability field is characterized by a wavenumber spectrum whose band width is specified
by the correlation numbers l and m.

that it is dominated by viscosity effects. On the other hand, the dispersive case is
characterized by ||ωv||/||ωp|| < 1, i.e. permeability effects dominate.

3.3. Random permeability

The knowledge gained from analysing flows in periodic permeability fields can now be
employed in studying the more complex situation of displacements through random
permeability fields. In order to construct such a random permeability field with a
given variance and correlation length, we follow the approach by Tan & Homsy
(1992). We define a correlation function

Rf (x, y) = s exp[−π{(x l)2 + (y m)2}], (3.8)

where l and m are the wavenumbers in the x- and y-directions, respectively, and
s denotes the variance of the permeability field. The spectral transform of the
correlation function Rf provides the probability density function, which is then used
to construct a random field f with a variance of s and mean of 0, according to an
algorithm given by Shinozuka & Jen (1972). The permeability field k is then specified
as k = ef . Contour profiles of the random permeability fields for l = m = 5 and
l = m = 20, respectively, are shown in figure 7. Unless otherwise noted, l and m will
be equal. In order to impose the condition of vanishing derivatives normal to the
boundaries, we employ the approach of Chen & Meiburg (1998b) and Camhi et al.
(2000). Statistically, the random field f has a Gaussian distribution, whose spread is
controlled by the variance. Note that the random heterogeneity is characterized by a
wavenumber spectrum, rather then a pure mode, which was the case for a periodic
permeability distribution. As a result, the complexity of the coupling between the
viscous and permeability vorticity components increases significantly, in view of the
fact that the spectrum of unstable modes can now be excited at different levels by the
permeability spectrum, particularly for large values of Pe, R and m. In other words,
larger m, Pe or R values increase the ability of the permeability variations to induce
resonant amplification at different length scales due to the excitation mechanisms
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Figure 8. Concentration fields for displacements in random permeability distributions with
Pe = 800, R = 2.5, and s = 0.5. The variation in the breakthrough efficiency η as a function
of m highlights the strong influence of the random distribution of high permeability paths in
the domain.

related to harmonic and subharmonic resonances. The most significant amplification
of viscous vorticity is expected to occur close to the most amplified naturally occurring
mode in homogeneous displacements.

In the light of the above discussion, we will briefly revisit two-dimensional quarter
five-spot displacements (Chen & Meiburg 1998b), in order to establish the extent
to which the concepts developed from the study of periodic heterogeneities can be
extended to the random heterogeneity case. Subsequently, we will proceed to the
investigation of three-dimensional displacements.

3.3.1. Influence of the permeability wavenumber

Figure 8 shows the concentration contours for displacements in random hetero-
geneous permeability fields of various wavenumbers m, at Pe= 800, R = 2.5 and
s = 0.5. For a small wavenumber (m = 5, figure 8a), the permeability field offers



Miscible displacements in heterogeneous porous media 13

35
30

25

20

15

10

5

0.05 0.10 0.15 0.250.20

ñ

50

40

30

25

20

15

10

5
0.05 0.10 0.15 0.20

(a) (b)

t t

Figure 9. Characteristic wavenumbers of the viscous (ñv , solid line) and permeability (ñp ,
dashed line) vorticities in random permeability fields for R = 2.5, s = 0.5, and various values
of m. (a) Pe = 200, (b) Pe = 800. �, m = 10; �, m = 20; �, m = 40. Various regimes can be
identified based on the criteria (3.5), (3.6) and (3.7).

a limited choice of high-permeability paths, so that the front is forced to follow
the circuitous route towards the sink. For the m = 10 case shown in figure 8(b),
the existence of several high-permeability paths close to the diagonal allows the
front to adopt a straighter path towards the sink, and thereby to achieve an earlier
breakthrough. However, this trend of having the dominant finger closer and closer to
the diagonal as m increases, is not uniform. For m =20 (figure 8c), an off-diagonal
path is dominant again, even though several high-permeability paths exist close to
the diagonal. For m =40, figure 8(d), we observe a wide range of length scales. In
this case, an off-diagonal path is again the most developed one. Note that all four of
the permeability fields were generated with the same set of random numbers, which
explains the similarity among them as far as the large scales are concerned.

In order to gain insight into the interaction mechanisms dominating these
displacements at Pe=800, we analyse the characteristic wavenumbers of the viscous
and permeability vorticities for R =2.5 and s = 0.5, shown in figure 9. For comparison,
the corresponding data for Pe= 200 are shown as well. Note that, since the ñp values
represent a weighted average of the spectrum, they are generally somewhat smaller
than the corresponding values of m, which specify the bandwidth of the permeability
spectrum. These data indicate whether the displacements are dominated by viscous
fingering, resonant amplification, or dispersion.

For Pe= 200 a resonant amplification is indicated for m =40 by ñv ≈ ñp ,
shown in figure 9(a). Thereafter, the viscous wavenumber drops rapidly below the
permeability wavenumber indicating a dispersion-dominated behaviour. For m = 10,
the dominant wavenumber ñv follows the homogeneous curve until it almost reaches
the permeability wavenumber ñp at t ≈ 0.09. The subsequent steep increase to a higher
wavenumber is possibly triggered by a resonant amplification.

For Pe = 800, the m = 40 case undergoes a resonant amplification with ñv ≈ 2 ñp at
early times, and with ñv ≈ ñp for 0.07 < t < 0.12, as seen in figure 9(b). Subsequently,
dispersive behaviour occurs with ñv ≈ ñp . Harmonic resonance (ñv ≈ 2 ñp) is also
observed for m = 20 during the time interval 0.05 < t < 0.09, and for m = 10 around
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Figure 10. Concentration contours for the same flow parameters as in figure 8 (Pe=800,
R = 2.5, s = 0.5), but different random permeability fields. Displacements in these fields give
rise to breakthrough efficiencies that grow monotonically with m.

t = 0.1 (ñv ≈ 3 ñp). The concentration contour plot for m = 20 in figure 8(c) suggests
that the early-time resonant amplification leads to a rapid development of fingers
away from the diagonal.

3.3.2. Influence of random realization

The above analysis of displacements through random permeability fields demon-
strates the strong influence of the correlation length on the level of coupling between
the viscous and permeability vorticities. We now investigate the sensitivity to individual
random realizations of the permeability field. Figure 10 shows the concentration
contours for the same flow parameters as in figure 8, but for permeability fields
obtained from a different set of random numbers. Note that all four permeability
fields shown in figure 10 were generated with the same set of random numbers
(just as all four fields of figure 8 were), even though they have different correlation
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Figure 11. Ratio of the viscous and permeability related vorticity norms for the random fields
used in (a) figure 8 and (b) in figure 10. The ratios are largely independent of the random
realization. However, note that the transition to the dispersive regime occurs at a larger value
of m for random heterogeneity fields, as compared to the periodic heterogeneity shown in
figure 6. The harmonic resonance regime at m = 20 for the two random cases, despite similar
values of ||ωv ||/||ωp||, leads to very different displacement efficiencies. However, for the viscous
fingering (m = 5 and 10) and dispersive (m = 40) regimes, the displacement efficiency is more
clearly correlated to the ratio of the norms, such that higher values of ||ωv ||/||ωp|| result in a
lower efficiency.

lengths. For this reason, all four fields shown in each of these plots share similar
large-scale features. However, while figure 8 had indicated a maximum efficiency for
the intermediate correlation wavenumber of m = 20, figure 10 displays a monotonic
increase of the efficiency with m. Inspection of the concentration contours shows
that this behaviour is directly related to the spatial distribution of high-permeability
regions in the domain. The permeability fields employed in figure 10 offer low-
resistance paths mainly along the diagonal. For increasing values of m, the growing
ratio of viscous to permeability length scale leads to more dispersive effects and higher
displacement efficiency.

3.3.3. Relative strengths of the viscous and permeability vorticity fields

Analysing the magnitudes of the viscous and permeability vorticity norms can shed
additional light on the mechanisms dominating different parameter regimes. Figure 11
shows the ratio ‖ωv‖/‖ωp‖ to be quite similar for the two sets of displacements
depicted in figures 8 and 10. For m = 5 and 10, this ratio is substantially larger than
one, indicating the viscous fingering regime. The resonant amplification for m = 20
leads to a ratio near unity, and the dispersive regime for m = 40 is reflected by a ratio
consistently smaller than one. We observe that for the resonant amplification regime
very similar values of ‖ωv‖/‖ωp‖ can lead to substantially different breakthrough
efficiencies for the two m =20 cases shown in figures 6(a) and 6(b).

Note that the above information is based on spectra, and therefore in a sense
describes spatially averaged information. It is to be kept in mind that the resonant
amplification between viscous and permeability vorticity can of course happen in
localized areas of the flow field.
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(a) m = 5 (b) m = 10

(c) m = 20 (d) m = 40
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Figure 12. Concentration isosurfaces for Pe = 400, R = 2.5, G = 0, A = 1/8, s = 0.1,
n = 12 and various values of m at t = 0.14. For m = 5 and 10, the diagonal regions exhibit
well-developed fingers, while the off-diagonal areas show some large-scale structures as a result
of merging events. Larger values of m tend to reduce the finger amplitude through dispersion.
The dispersion-dominated displacement for m = 40 smooths out small-scale fingers, and
instead gives rise to a large-scale horizontal wave.

4. Three-dimensional neutrally buoyant displacements
The above analysis demonstrates that the dynamical evolution of two-dimensional

heterogeneous displacements depends on the dominant wavelengths of the viscous
and permeability vorticities, and on their relative magnitude compared to the length
scale governing the corresponding homogeneous displacement. The ratios of these
three length scales determine if the flow is dominated by viscous fingering, resonant
amplification, or dispersion.

Our recent linear stability analysis of neutrally buoyant, three-dimensional homo-
geneous displacements in nominally axisymmetric geometries shows that they are
governed by helical waves whose most unstable axial wavenumber component
changes over time (Riaz & Meiburg 2003a). The subsequent nonlinear investigation
of such homogeneous displacements (Riaz & Meiburg 2003b) indicates that this time
dependence of the dominant vertical length scale leads to a large-scale redistribution
of concentration gradients, which provides an extra source of instability to the system.
How this interaction of vertical and horizontal modes affects the characteristics of
three-dimensional heterogeneous displacements is the main issue to be addressed in
the following.

4.1. Periodic permeability variation

Similarly to the two-dimensional case, we first analyse a periodic permeability varia-
tion constructed as

k(x, y, z) = exp{γ cos(2πlx) cos(2πmy) cos(2πnz)}, (4.1)

where l, m, and n denote the wavenumbers in the x-, y- and z-directions, respectively.
Below we typically employ l =m, but vary n independently. Figure 12 shows the
c =0.5 isosurfaces for a set of neutrally buoyant simulations with Pe= 400, R = 2.5,
G =0, and s = 0.1 for various values of m. In conjunction with a vertical wavenumber
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Figure 13. Comparison of the viscous vorticity norms for Pe= 400, R = 2.5, s = 0.1.
(a) Three-dimensional case with G = 0 and n= 12. The norm ‖ωv

v‖ is based upon the vertical
component of the viscous vorticity. (b) ‖ω2D

v ‖ for the two-dimensional case. �, m= 5; �,
m= 10; �, m= 20; �, m= 40. A higher level of instability for three-dimensional displacements
at early times leads to ‖ωv

v‖ > ‖ω2D
v ‖. At later times, the interaction of horizontal and vertical

modes for the three-dimensional case leads to ‖ωv
v‖ < ‖ω2D

v ‖, which results in an improvement
of the breakthrough efficiency.

n= 12, the aspect ratio A= 1/8 results in 1.5 wavelengths in the vertical direction.
Within horizontal planes the interfacial shapes are similar to their two-dimensional
counterparts. Thus, in the m = 5 and 10 cases in figures 12(a) and 12(b) the fingers
along the main diagonal evolve relatively freely, i.e. the displacement is dominated by
viscous fingering. The m = 20 case in figure 12(c) shows a transition to the dispersive
regime, in which dispersion reduces the finger amplitude. The dispersion-induced
transition to a higher effective horizontal wavelength is observed for the m = 40 case
in figure 12(d). In order to assess how the vertical permeability variations affect these
displacements, we analyse again the vorticity norms.

Norms of the vertical viscous vorticity component shown in figure 13 reveal
significant differences between the two- and three-dimensional displacements. Initially
higher values of the vorticity norm for the three-dimensional case are consistent with
our results of homogeneous displacements (Riaz & Meiburg 2003b), which show
three-dimensional flows to be more unstable than their two-dimensional counterparts.
However, note that for later times (t > 0.05), the vorticity norms decay more rapidly
in three dimensions than in two. This reflects an overall damping effect in three-
dimensional flows due to vertical permeability variations. Consequently, figure 13
indicates higher efficiencies for three-dimensional displacements than for the cor-
responding two-dimensional flows, for all m values except 40. For this large value
of m =40 notice that the norm decays rapidly and then rises steeply to achieve an
efficiency lower than either the m =10 or the m =20 case. Inspection of figure 12(d)
shows that the large-scale structures do not interact with each other and apparently
cannot be affected by very small-scale permeability variations, hence they move more
rapidly towards the production well compared to those shown in figures 12(b) and
12(c).
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(a) (b)

(c)

Figure 14. Concentration isosurfaces for Pe = 400, R = 2.5, G = 0, A = 1/8, s = 0.1, m = 10
and (a) n = 4, (b) n = 20, (c) n = 40. With an increase in n, fingers tend to interact, merge
and form large-scale vertical structures as a result of the dispersive regime.

Figure 14 demonstrates the influence of the vertical permeability wavenumber in
displacements with the same parameters as those in figure 12, for m = 10 and various
values of n. For a small value of n = 4, the fingers in different horizontal planes do not
interact strongly with each other, and breakthrough is quickly achieved (figure 14a).
The case of n= 12 is shown in figure 12(b), which indicates some level of vertical
finger interaction. At the higher value of n= 20 (figure 14b), a transition to dispersive
behaviour can be observed. The interface tends to develop vertical structures on a
scale significantly larger than the vertical permeability wavelength. Finally, the still
higher value of n= 40 is dominated by dispersion (figure 14c), and a strong shielding
effect in the horizontal planes arises due to the large vertical structures.

Figure 15 compares the breakthrough efficiencies for various values of n and m. The
straight dotted lines show the corresponding data for the two- and three-dimensional
homogeneous cases. As described in our earlier investigation (Riaz & Meiburg 2003b),
the three-dimensional homogeneous case is more unstable, and has a lower efficiency,
than its two-dimensional counterpart. The bold solid line represents the efficiency
values for the two-dimensional heterogeneous case. For small values of the horizontal
permeability wavenumber m, all but the lowest value of the vertical wavenumber n give
rise to strong fingering interactions and dispersion, which stabilize the displacement
and lead to higher efficiencies than for the two-dimensional heterogeneous case. On the
other hand, for n = 4 the three-dimensional displacement is in the viscous fingering
regime, and hence more unstable than the corresponding two-dimensional case. Note
that the highest efficiencies are achieved for the intermediate vertical wavenumbers
of n= 12 and 20. For n= 40 large-scale fingering structures are generated, which
again has a destabilizing effect. The behaviour of η as a function of n can be
attributed to similar effects, i.e. small n values are more unstable while intermediate
values are the most stable due to dispersion and finger interaction. Higher n values
are again unstable due to the generation of large-scale isolated structures as shown
in figure 14(c) which do not interact and also cannot be effectively dispersed by
very small correlation lengths. For some parameter combinations three-dimensional
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Figure 15. Comparison of the breakthrough efficiency η between two- and three-dimensional
displacements for various values of n as function of m. Pe= 400, R = 2.5, G = 0, and s = 0.1.
The absence of horizontal and vertical mode interactions results in a low efficiency for
three-dimensional displacements at n= 4. Dispersion and finger interactions improve the
efficiency for higher n and m values. For some parameter combinations, η for three-dimensional
heterogeneous displacements can be larger than for three-dimensional homogeneous dis-
placements.

heterogeneous displacements are stabilized to the extent that their efficiency is larger
than that of the corresponding homogeneous flow, as shown in figure 15. In contrast,
two-dimensional heterogeneous displacements always show a lower efficiency than the
corresponding homogeneous case.

4.2. Random permeability variation

The three-dimensional random permeability field is constructed similarly to its two-
dimensional counterpart given by equation (3.8). Figure 16 presents c = 0.5 isosurfaces
for various values of m and n, with Pe=400, R = 2.5, G = 0, A= 1/8 and s = 0.1
at t = 0.04. Figure 16(a) shows the cases of m = 5 at n= 20 to be dominated by the
viscous fingering regime. The interaction among the fingers is seen to become more
intense for m =40 (figure 16c). Pairing and shielding interactions are already evident
at the early time of t = 0.04, leading to the generation of large-scale structures that
indicate the transition from the viscous fingering to the dispersive regime.

By keeping the horizontal wavenumber m constant and increasing the vertical
permeability wavenumber n, we observe a similar transition from the viscous fingering
regime shown in figure 16(b) to the dispersive regime shown in figure 16(d).

Figure 17 shows the ratio of the viscous and permeability vorticity vector norms.
It indicates that the m, n =5, 10, 20 displacements are dominated by the viscous
fingering regime (‖ωv‖/‖ωp‖ > 1) for early times. The m = 40 and n = 40 cases soon
enter the dispersive regime due to the rapid increase in the viscous length scale. On the
other hand, the cases m = 5 and 10 in figure 17(a), and n= 5 and 10 in figure 17(b)
remain in the viscous fingering regime throughout the entire displacement. The
m = 20 and n= 20 cases are on the border of the viscous fingering and the dispersive
regimes.
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(a) m = 5, n = 20 (b) m = 20, n = 5

(d) m = 20, n = 40(c) m = 40, n = 20
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Figure 16. Concentration isosurfaces for three-dimensional displacements through random
permeability distribution for Pe= 400, R = 2.5, G = 0, A = 1/8, s = 0.1 and various values
of m and n at t =0.04. An increase in either the horizontal or the vertical permeability
wavenumber generates a more complex interfacial structure, increasing the possibility of
fingering interactions. As a result the generation of structures much larger than the correlation
length increases the possiblity of dispersive behaviour at later times, as shown in figure 17.

3

2

1

3

2

1

0.05 0.10 0.15 0.20

||ωv||——
||ωp||

0.05 0.10 0.15 0.20

(a) (b)

t t

m = 5   η = 28.07%
m = 10 η = 31.10%
m = 20 η = 35.81%
m = 40 η = 35.92%

n = 5   η = 32.34%
n = 10 η = 32.98%
n = 20 η = 35.92%
n = 40 η = 38.14%

Figure 17. Ratio of the norms of the viscosity and permeability related vorticity for Pe=400,
R = 2.5, G = 0, A =1/8, s = 0.1. (a) n= 20 various m values. (b) m= 20, various n values.
For the smaller m and n values, the displacement is in the viscous fingering regime
(‖ωv‖/‖ωp‖ > 1) at early times. For later times, the m= 20 case transitions into the dispersive
regime (‖ωv‖/‖ωp‖ < 1).

5. Three-dimensional displacements with gravity override
The difference in density between injected and displaced fluid introduces an

additional vorticity component. If the injected fluid is lighter than the displaced
fluid, this gravitational vorticity can give rise to a gravity layer, which substantially
alters the characteristics of the flow (Tchelepi & Orr 1994; Ruith & Meiburg 2000).
Within the gravity layer the fingers are enhanced, while in the underride region they
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(a) G = 0, η = 35.97% (b) G = 0.5, η = 38.17%

(c) G = 1, 34.24%
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Figure 18. Concentration isosurfaces for the gravity override case. Pe = 400, R = 2.5, s = 0.1,
m = 20, n = 20, t = 0.14 and various values of G. By encouraging the development of a
gravity layer along the top boundary, the dominant fingers close to the lower boundary are
weakened, resulting in an improvement in efficiency as G goes from 0 → 0.5. Further increase
in the gravity override effect at G = 1 strengthens the fingers in the gravity layer resulting in
a reduction in efficiency. Due to the coupling between viscous and permeability vorticities, the
gravity override effect is weaker than in homogeneous displacements.

are suppressed. For homogeneous quarter five-spot displacements, a larger gravity
parameter G generally results in earlier breakthrough, although for some parameter
combinations intermediate values of G have been observed for which the efficiency
is optimized due to specific interactions between the horizontal and vertical modes
(Riaz & Meiburg 2003b). Two-dimensional rectilinear displacements (Camhi et al.
2000) demonstrate that the effect of gravity override is considerably reduced by
permeability heterogeneities, due to the coupling between the viscous and permeability
vorticities. As a result, an optimal efficiency is achieved at an intermediate variance
level.

The influence of gravity override is shown in figure 18 for a representative com-
bination of displacement parameters, at various values of the gravity parameter G.
Comparison of the G = 0.5 case in figure 18(b) with the G =0 case in figure 18(a)
shows that gravity override strengthens the fingers close to the upper boundary, while
weakening those near the lower boundary. While the gravity layer is not as pronounced
for the present heterogeneous case as it is for the corresponding homogeneous case
(Riaz & Meiburg 2003b), a slight diversion of the flow from the underride region to
the gravity layer for G =0.5 slows the rapid movement of the dominant fingers in
the underride region observed for G =0 in figure 18(a). Consequently, for the case
G = 0.5 figure 18(b) shows that the gravity layer fingers are slightly stronger than the
G = 0 case, which results in an improvement of the efficiency. It should be pointed
out that the maximum in the recovery curve for an intermediate G in the above case
is due to the location of the dominant flow path in the underride region. If the flow
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(a) G = 0, η = 35.34% (b) G = 0.5, η = 33.30%

(c) G = 1, 31.88%

z

yx

Figure 19. Concentration isosurfaces for the same cases as in figure 18, but with a lower
variance s = 0.01. The lower level of heterogeneity allows the gravity layer to develop
relatively freely, which results in a monotonic decrease in efficiency. The higher efficiency for
the s = 0.1 case as compared to s = 0.01 for G = 0 is due to a weakening of the gravity layer,
as well as the strengthening of the off-diagonal fingers, at s = 0.1.

path with the lowest resistance were instead located close to the upper boundary,
there would be a monotonic decrease in efficiency with increasing G.

Note that the gravity layer is relatively weak for the present heterogeneous case,
as compared to the corresponding homogeneous flow (Riaz & Meiburg 2003b). This
fact, which is similar to observations for rectilinear flows, indicates that at the level of
s = 0.1 the heterogeneity is already too strong for the coupling between the viscous
and permeability vorticities to be effectively modified by the gravitational vorticity
component. This is confirmed by figure 19, which depicts the same flows as figure 18,
except that s = 0.01. Here the gravity layer is much stronger, which leads to a lower
breakthrough efficiency for s = 0.01 than for s = 0.1, for both G = 0.5 and 1.

The above observation reflects the fact that the dominant path is selected not only
on the basis of its permeability. Also important is its potential to support a resonant
amplification, which partly depends on its geometric nature, and also on the local
flow rate, which in turn is a function of the overall gravitational effect. Hence, the
flow can select a relatively low-permeability path over one with higher permeability,
as long as it supports a strong resonant amplification.

The relatively weak dependence of heterogeneous displacements on the gravity
parameter, as compared to their homogeneous counterparts, is also reflected in the
norms of the vertical and horizontal viscous vorticity fields. Since gravitational effects
primarily result in horizontal vorticity, it is instructive to analyse the ratio of the
vertical to the horizontal viscous vorticity norms ‖ωv

v‖/‖ωh
v‖, shown in figure 20. We

vary both the horizontal (m, figure 20a) and the vertical (n, figure 20b) permeability
wavenumber. In each case the homogeneous displacement is more strongly affected
by the horizontal vorticity, i.e. by gravitational effects, than any of the heterogeneous
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Figure 20. Ratio of the vertical and horizontal viscous vorticity norm. Pe= 400, R = 2.5,
G = 0.5, s = 0.1, A = 1/8, (a) n= 20, (b) m= 20. Gravity override increases the relative strength
of disturbances in the vertical direction, which are associated with horizontal vorticity. For
the homogeneous case ‖ωv

v‖/‖ωh
v ‖ < 1. On the other hand, the ratio exceeds unity for most

heterogeneous cases, which implies that the perturbations in the horizontal directions are
dominant. The ratio decreases with increasing m, while it increases with n.

displacements. Note that the influence of gravity, as measured by ‖ωv
v‖/‖ωh

v‖, decreases
with m, while it increases with n.

As seen above, individual random realizations of the permeability field can strongly
influence the fingering dynamics, and consequently the displacement efficiency. We
have not attempted to run sufficiently many simulations in order to obtain statistically
significant averages, due to the prohibitive computational expense. Instead, we have
limited ourselves to identifying the generic mechanisms which govern heterogeneous
displacements. The accurate prediction of the displacement efficiency for a specific
permeability field would, of course, require complete knowledge of the permeability
distribution (Zhan & Yortsos 2001).

6. Summary and conclusions
The present investigation attempts to unravel the vorticity interaction mechanisms

governing miscible displacements in heterogeneous porous media. Towards this
end, we conduct three-dimensional simulations in the regimes of viscous fingering,
dispersion (Waggoner et al. 1992; Tchelepi & Orr 1994; De Wit & Homsy 1997b;
Camhi et al. 2000), and resonant amplification (De Wit & Homsy 1997a). The com-
putational results are analysed in detail with respect to the characteristic wavenumbers
and norms associated with the various components of the overall vorticity field.
Only the combined information obtained from these diagnostic quantities allows
us to identify and establish the mechanisms dominating specific flows. The nature
of the displacement is discussed as a function of the relative magnitudes of the
three length scales associated with the viscous vorticity, the permeability vorticity,
and the corresponding homogeneous flow, respectively. Nominally axisymmetric dis-
placements are particularly interesting in this respect, since some of the characteristic
length scales grow in time as the front expands radially. This leads to displacement
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flows that can undergo resonant amplification for a limited duration, while being
dominated by fingering or dispersion at other times. Furthermore, the simulation
results provide insight into how gravity affects the interactions among these length
scales.

In a first step, the governing mechanisms are analysed for the conceptually simpler
problem of spatially periodic permeability variations. We confirm that the resonant
amplification is strongest when the permeability wavenumber is close to that of
the corresponding homogeneous displacement. Random permeability distributions
give rise to somewhat more complex displacements, due to the fact that they
contain a range of length scales that have the potential to interact with the viscous
instability. Comparisons among displacements for different parameter combinations
highlight an important aspect regarding the selection of preferential flow paths: The
displacement does not necessarily proceed most rapidly along maximum permeability
channels. Rather, the selection is governed by both the local permeability values and
the potential for resonant amplification along a given path. Therefore, the overall
displacement parameters such as the Péclet number, the viscosity ratio or the gravity
parameter all influence the effective path resistance.

Overall, three-dimensional neutrally buoyant displacements are seen to be qual-
itatively similar to their two-dimensional counterparts. However, for late times the
interaction of the horizontal and vertical modes in three dimensions leads to a more
subdued growth as compared to two-dimensional displacements, which results in a
higher breakthrough efficiency. In the presence of density differences, the potential
for gravity override becomes important. While this effect is seen to play a dominant
role in homogeneous displacements, it is suppressed to some extent in heterogeneous
displacements, even for relatively small values of the heterogeneity variance. This is a
result of the coupling between the viscous and permeability vorticity fields, particularly
for the viscous fingering and resonant amplification regimes. In the dispersive regime,
gravity override is somewhat more effective because the coupling between the viscous
and permeability vorticity fields is less pronounced, so that the large-scale structures
become more responsive to buoyancy effects. This is confirmed by the ratio of the
vertical to the horizontal viscous vorticity norm, which decreases with increasing
values of the vertical correlation wavenumber.

In the present investigation, we were able to touch upon the effects of different
random realizations of the heterogeneity field only briefly. This issue will have to be
addressed in more detail in order to obtain relevant statistical information regarding
such global quantities as the breakthrough efficiency.
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